Progetti in reteScuola e formazioneRegistrati ad elektro.itHome page



SICUREZZA ELETTRICA  

 

IndietroIndiceAvanti

LA SICUREZZA ELETTRICA IN BASSA TENSIONE 

Elettrofisologia (1)

2.    Elettrofisiologia

2.1 Variazioni di potenziale e attività biologica

Sono molto conosciuti gli esperimenti che Galvani fece alla fine del XVIII sulla contrazione del muscolo di una rana per l’applicazione di una differenza di potenziale elettrico. Da allora, la conoscenza dei fenomeni elettrici inerenti il corpo umano e degli effetti della corrente elettrica esterna introdotta su di essi, sono ampiamente studiati in una disciplina scientifica denominata elettrofisiologia. Le variazioni di potenziale prodotte dall’attività biologica, all’interno del corpo umano sono indicative del funzionamento normale o anormale di alcuni organi: cuore (elettrocardiogramma), cervello (elettroencefalogramma), muscoli (elettromiogramma), occhio (retinogramma).

2.2    Potenziale di riposo

Il corpo umano, in gran parte composto di una soluzione salina conduttrice, si può dire sia costituito da un insieme di atomi o gruppi di atomi che, quando perdono o acquistano elettroni, sono chiamati ioni (cationi, se hanno perso elettroni oppure anioni, se hanno acquistato elettroni); sono tali le cellule (Fig. 2.1) o il liquido interstiziale che le separa. Ioni K+, Na+, Cl+, ecc.., che si muovono verso zone di minor concentrazione e che sono soggetti al campo elettrico generato dall’insieme degli altri ioni. Poiché la cellula ha verso gli ioni un comportamento di tipo selettivo, gli ioni non si diffondono allo stesso modo dentro e fuori la cellula (ad esempio la cellula è molto permeabile allo ione potassio  piuttosto che allo ione sodio). Lo ione K+  viene trasportato all’interno della cellula mentre lo ione Na+ viene espulso con la tipica azione di pompaggio biochimico a spese dell’organismo (pompa metabolica). La cellula viene quindi a possedere un potenziale negativo all’interno rispetto all’esterno (potenziale di riposo). Nei mammiferi le cellule del sistema nervoso centrale presentano un potenziale di riposo di 70 mV: una differenza di potenziale notevole se si considerano le piccole dimensioni della cellula.

Fig.2.1 - E' possibile misurare il potenziale che presenta la cellula, negativo all'interno rispetto all'esterno, tramite un millivoltmetro

La membrana cellulare separando cariche elettriche si comporta come un condensatore . La membrana non è perfettamente isolante ed è attraversata da un certo numero di ioni perciò, oltre ad un valore di capacità, presenterà anche una resistenza elettrica. Il modello elettrico semplificato delle cellule umane sarà perciò rappresentato da un condensatore C in parallelo con una resistenza R e da un generatore di tensione che rappresenta il potenziale di riposo determinato dalla diversa concentrazione di ioni nella cellula (Fig. 2.2).

 

 

 

 

 




Fig. 2.2 Schema elettrico equivalente di una cellula.

2.3    Potenziale d’azione

Se si applica ad una cellula eccitabile un impulso di corrente di polarità inversa a quella della cellula stessa, il potenziale da negativo diviene positivo per ritornare di nuovo al valore iniziale. Quando lo stimolo elettrico eccita la cellula, aumenta notevolmente la permeabilità della membrana agli ioni sodio che, entrando nel citoplasma della  cellula, prima la depolarizzano, annullando la differenza di potenziale  tra interno ed esterno,  e poi ne causano l’inversione di polarità. L’ampiezza minima dell’impulso di corrente necessario ad  eccitare la cellula e a determinarne l’inversione del potenziale decresce con l’aumentare della durata per tendere ad un valore costante secondo una curva  simile ad un’iperbole equilatera denominata curva di eccitabilità . Uno stimolo elettrico riesce a eccitare la cellula soltanto se produce un flusso di corrente la cui intensità e durata sono superiori ad una soglia  che prende il nome di reobase. Per stimoli di intensità superiore alla reobase, l'eccitazione avviene soltanto se la durata dello stimolo e l'intensità di corrente sono al di sopra della curva mostrata in figura 2.3. Questa curva rappresenta il limite per cui uno stimolo riesce a eccitare una cellula .

Fig. 2.3  - Curva di eccitabilità di una cellula

2.4    Soglia di percezione

I segnali elettrici connessi con l’attività biologica  controllano il funzionamento dei vari organi e vengono trasmessi dai neuroni del sistema nervoso. Stimoli elettrici  che superano la soglia di eccitabilità e che provengono dall’esterno  possono risultare pericolosi e influire sulle funzioni vitali. La pericolosità di questi stimoli può variare a seconda dell’intensità e della natura della corrente, dalla durata del contatto, dalla costituzione fisica della persona colpita (massa corporea e stato di salute)  e dalla frequenza. Correnti a maggior frequenza sono meglio sopportate in quanto la durata dell’impulso necessario ad eccitare la cellula, inversamente proporzionale alla frequenza, diminuisce all’aumentare della frequenza e quindi è necessario aumentare l’intensità dello stimolo per provocare la modificazione del potenziale di riposo della cellula. Inoltre la pericolosità della corrente elettrica diminuisce perché questa tende a passare attraverso la pelle. Il fenomeno descritto si chiama appunto “effetto pelle” poiché i danni provocati dal passaggio della corrente elettrica interessano solo la pelle e non gli organi vitali.  Anche la corrente continua può essere pericolosa ma è necessaria un’intensità maggiore di quella alternata a 50 Hz  a causa di un fenomeno che avviene nella cellula sottoposta ad uno stimolo continuo detto di accomodazione: in presenza di uno stimolo ininterrotto la cellula si adatta alla nuova situazione aumentando la sua soglia di eccitabilità. Il valore di corrente percepibile da una persona è un fatto individuale che dipende da diversi fattori: non è facile determinare i minimi  valori di corrente che superano la soglia di percezione e quindi si ricorre a criteri statistici e a metodi sperimentali. 

Continua...

Inizio pagina

 

Prodotto da Elektro 2000

Diritti sul Copyright